Computing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes
نویسنده
چکیده
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as v u v e uv PI (G) n (e) n (e). = = + ∑ Then Omega polynomial Ω(G,x) for counting qoc strips in G is defined as Ω(G,x) = ∑cm(G,c)x with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. The vertex PI, omega and Sadhana polynomials of this class of fullerenes are computed for the first time.
منابع مشابه
Computing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G) euv nu (e) nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...
متن کاملOn Counting Polynomials of Some Nanostructures
The Omega polynomial(x) was recently proposed by Diudea, based on the length of strips in given graph G. The Sadhana polynomial has been defined to evaluate the Sadhana index of a molecular graph. The PI polynomial is another molecular descriptor. In this paper we compute these three polynomials for some infinite classes of nanostructures.
متن کاملUse of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes
Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...
متن کاملComputing Vertex PI Index of Tetrathiafulvalene Dendrimers
General formulas are obtained for the vertex Padmakar-Ivan index (PIv) of tetrathiafulvalene (TTF) dendrimer, whereby TTF units we are employed as branching centers. The PIv index is a Wiener-Szeged-like index developed very recently. This topological index is defined as the summation of all sums of nu(e) and nv(e), over all edges of connected graph G.
متن کاملOn Omega and Sadhana Polynomials of Leapfrog Fullerenes
A fullerene graph is a cubic 3-connected plane graph with (exactly 12) pentagonal faces and hexagonal faces. Let Fn be a fullerene graph with n vertices. By the Euler formula one can see that Fn has 12 pentagonal and n/2 – 10 hexagonal faces. Let G = (V, E) be a connected graph with the vertices set V = V(G) and the edges set E = E(G), without loops and multiple edges. The distance d(x,y) betwe...
متن کامل